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Abstract: In this paper, a unique camera mapping be-
tween the desired camera feature vector and the desired
camera pose (i.e., the position and orientation) is in-
vestigated to develop a measurable image Jacobian-like
matrix. An image-space path planner is then proposed
to generate a desired image trajectory based on this mea-
surable image Jacobian-like matrix and an image space
navigation function (NF) (i.e., a special potential field
function) while satisfying rigid body constraints. An
adaptive, homography-based visual servo tracking con-
troller is then developed to navigate the position and ori-
entation of a camera held by the end-effector of a robot
manipulator to a goal position and orientation along the
desired image-space trajectory while ensuring the target
points remain visible (i.e., the target points avoid self-
occlusion and remain in the field-of-view (FOV)) under
certain technical restrictions. The self-occlusion prob-
lem is also discussed. Due to the inherent nonlinear
nature of the problem and the lack of depth information
from a monocular system, a Lyapunov-based analysis is
used to analyze the path planner and the adaptive con-
troller. Simulation results are provided to illustrate the
performance of the proposed approach.

1 Introduction

There is significant motivation to provide improved au-
tonomy for robotic systems. In part, this motivation
has lead researchers to investigate the basic science
challenges leading to the development of visual servo
controllers as a means to provide improved robot au-
tonomy. In general, visual servo controllers can be
divided into position-based visual servo (PBVS) con-
trol, image-based visual servo (IBVS), and hybrid ap-
proaches. PBVS is based on the idea of using a vision
system to reconstruct the Euclidean-space and then de-
veloping the servo controller on the reconstructed in-
formation. A well known issue with this strategy is
that the target object may exit the camera field-of-view
(FOV). IBVS control is based on the idea of directly

1This research was supported in part by U.S. NSF Grant DMI-
9457967, ONR Grant N00014-99-1-0589, a DOC Grant, and an
ARO Automotive Center Grant at Clemson University, and in
part by AFOSR contract number F49620-03-1-0381 at the Uni-
versity of Florida.

servoing on the image-space information, with reported
advantages of increased robustness to camera calibra-
tion and improved capabilities to ensure the target re-
mains visible. Even for IBVS controllers that are formu-
lated as regulation controllers, if the initial error is large
then excessive control action and transient response can
cause the target to leave the FOV, and may lead to tra-
jectories that are not physically valid or optimal due
to the nonlinearities and potential singularities with as-
sociated the transformation between the image space
and the Euclidean-space [2]. For a review of IBVS and
PBVS controllers see [19].

In light of the characteristics of IBVS and PBVS, several
researchers have recently explored hybrid approaches.
For example, homography-based visual servo control
techniques (coined 2.5D controllers) have been recently
developed in a series of papers by Malis and Chaumette
(e.g., [1], [25], [26]). The homography-based approach
exploits a combination of reconstructed Euclidean in-
formation and image-space information in the control
design. The Euclidean information is reconstructed by
decoupling the interaction between translational and ro-
tational components of a homography matrix. As stated
in [25], some advantages of this methodology over the
aforementioned IBVS and PBVS approaches are that an
accurate Euclidean model of the environment (or tar-
get object) is not required, and potential singularities
in the image-Jacobian are eliminated (i.e., the image-
Jacobian for homography-based visual servo controllers
is typically triangular). Motivated by the advantages
of the homography-based strategy, several researchers
have recently developed various regulation controllers
for robot manipulators (see [5], [7], and [10]).

While homography-based approaches exploit the advan-
tages of IBVS and PBVS, a common problem with
all the aforementioned approaches is the inability to
achieve the control objective while ensuring the target
features remain visible. To address this issue, Mezouar
and Chaumette developed a path-following IBVS algo-
rithm in [28] where the path to a goal point is gener-
ated via a potential function that incorporates motion
constraints; however, as stated in [28], local minima as-
sociated with traditional potential functions may exist.
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Using a specialized potential function (coined a navi-
gation function (NF)) originally proposed in [23] and
[33], Cowan et al. developed a hybrid position/image-
space controller that forces a manipulator to a desired
setpoint while ensuring the object remains visible (i.e.,
the NF ensures no local minima) and by avoiding pit-
falls such as self-occlusion [9]. However, as stated in
[28], this approach requires the complete knowledge of
the space topology and requires an object model. In
[17], Gans and Hutchinson developed a strategy that
switches between an IBVS and a PBVS controller to
ensure asymptotic stability of the position and orienta-
tion (i.e., pose) in the Euclidean and image-space. An
image-space based follow-the-leader application for mo-
bile robots was developed in [8] that exploits an image-
space NF. Specifically, an input/output feedback lin-
earization technique is applied to the mobile robot kine-
matic model to yield a controller that yields “string sta-
bility” [15]. Without a feedforward component, the con-
troller in [8] yields an approximate “input-to-formation”
stability (i.e., a local, linear exponential system with a
bounded disturbance). A NF based approach to the
follow-the-leader problem for a group of fully actuated
holonomic mobile robots is considered in [30] where con-
figuration based constraints are developed to ensure the
robot edges remain in the sight of an omnidirectional
camera. While a Lyapunov-based analysis is provided
in [30] to ensure that the NF decreases to the goal posi-
tion, the stability of the overall system is not examined.

Motivated by the image space navigation function de-
veloped in [9], an off-line desired image trajectory gen-
erator is proposed based on a new image Jacobian-like
matrix for the monocular, camera-in-hand problem.
This approach generates a desired camera pose trajec-
tory that moves the camera from the initial camera pose
to a goal camera pose while ensuring that all the feature
points of the object remain visible under certain tech-
nical restrictions. To develop a desired camera pose
trajectory that ensures all feature points remain visi-
ble, a unique relationship is formulated between the de-
sired image feature vector and the desired camera pose.
The resulting image Jacobian-like matrix is related to
the camera pose, rather than the camera velocity as in
other approaches [2]. Motivation for the development of
this relationship is that the resulting image Jacobian-
like matrix is measurable, and hence, does not suffer
from the lack of robustness associated with estimation
based methods. Further more, the desired image gen-
erated with this image Jacobian-like matrix will satisfy
rigid body constraints automatically (The terminology,
rigid body contraints, in this paper is utilized to denote
the constraints for the image feature vector that the fea-
ture points have a fixed relative position to each other
in Eucledean space). Building on our recent research in
[5], an adaptive homography based visual tracking con-
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Figure 1: Coordinate frame relationships

troller is then developed to ensure that the actual cam-
era pose tracks the desired camera pose trajectory (i.e.,
the actual features track the desired feature point tra-
jectory) despite the fact that time-varying depth from
the camera to the reference image plane is not measur-
able from the monocular camera system. Based on the
analysis of the homography based controller, bounds are
developed that can be used to ensure that the actual im-
age features also remain visible under certain technical
restrictions. A Lyapunov-based analysis is provided to
support the claims for the path planner and to analyze
the stability of the adaptive tracking controller. Simu-
lation results are provided to illustrate the performance
of the proposed approach.

2 Geometric Modeling

2.1 Euclidean Homography
Four feature points, denoted by Oi ∀i = 1, 2, 3, 4, are
assumed to be located on a reference plane π (see Figure
1), and are considered to be coplanar1 and not colinear.
The reference plane can be related to the coordinate
frames F , Fd, and F∗ depicted in Fig. 1 that denote
the actual, desired, and goal pose of the camera, respec-
tively. Specifically, the following relationships can be
developed from the geometry between the coordinate
frames and the feature points located on π

m̄i = xf +Rm̄∗i
m̄di = xfd +Rdm̄

∗
i

(1)

where m̄i(t), m̄di(t), and m̄∗i denote the Euclidean coor-
dinates of Oi expressed in F , Fd, and F∗, respectively.
In (1), R (t), Rd (t) ∈ SO(3) denote the rotation be-
tween F and F∗ and between Fd and F∗, respectively,
and xf (t), xfd (t) ∈ R3 denote translation vectors from

1 It should be noted that if four coplanar target points are not
available then the subsequent development can exploit the classic
eight-points algorithm [26] with no four of the eight target points
being coplanar.

p. 2



F to F∗ and Fd to F∗ expressed in the coordinates of
F and Fd, respectively. Since the Euclidean position
of F , Fd, and F∗ cannot be directly measured, the ex-
pressions in (1) need to be related to the measureable
image-space coordinates. To this end, the normalized
Euclidean coordinates of Oi expressed in terms of F ,
Fd, and F∗ as mi (t), mdi (t), m∗i ∈ R3, respectively,
are defined as follows

mi ,
m̄i

zi
mdi ,

m̄di

zdi
m∗i ,

m̄∗i
z∗i

(2)

under the standard assumption that zi (t), zdi(t), z∗i > ε
where ε denotes an arbitrarily small positive constant.
Based on (2), the expression in (1) can be rewritten as
follows

mi =
z∗i
zi|{z}

³
R+

xf
d∗
n∗T

´
| {z }m∗i

αi H

(3)

mdi =
z∗i
zdi|{z}

³
Rd +

xfd
d∗
n∗T

´
| {z }m∗i .

αdi Hd

(4)

In (3) and (4), αi (t), αdi (t) ∈ R denote invertible depth
ratios, H (t) , Hd(t) ∈ R3×3 denote Euclidean homogra-
phies [13], and d∗ ∈ R denotes the constant, unknown
distance from the origin of F∗ to π. The following pro-
jective relationship can also be developed from Fig. 1

d∗ = n∗T m̄∗i . (5)

Also from Fig. 1, the unknown, time varying distance
from the origin of Fd to π, denoted by d (t) ∈ R, can be
expressed as follows

d = n∗TRTd m̄di. (6)

2.2 Projective Homography
Each feature point on π has a projected pixel coordinate
denoted by ui (t), vi (t) ∈ R in F , udi (t), vdi (t) ∈ R in
Fd, and u∗i , v∗i ∈ R in F∗, that are defined as follows

pi ,
£
ui vi 1

¤T
pdi ,

£
udi vdi 1

¤T
p∗i ,

£
u∗i v∗i 1

¤T
.

(7)
In (7), pi (t), pdi (t), p∗i ∈ R3 represent the image-space
coordinates of the time-varying feature points, the de-
sired time-varying feature point trajectory, and the con-
stant reference feature points, respectively. To calculate
the Euclidean homography given in (3) and (4) from
pixel information, the projected pixel coordinates of the
target points are related to mi (t), mdi (t), and m∗i by
the following pin-hole lens models [13]

pi = Ami pdi = Amdi p∗i = Am
∗
i (8)

where A ∈ R3×3 is a known, constant, and invertible
intrinsic camera calibration matrix with the following
form

A =

⎡⎣ a1 a2 a4
0 a3 a5
0 0 1

⎤⎦ (9)

where ai ∈ R ∀i = 1, 2, ..., 5, denote known, constant
calibration parameters (see [13]). After substituting (8)
into (3) and (4), the following relationships can be de-
veloped

pi = αi
¡
AHA−1

¢| {z } p∗i pdi = αdi
¡
AHdA

−1¢| {z } p∗i
G Gd

(10)
where G (t), Gd (t) ∈ R3×3 denote projective homogra-
phies. Given the images of the 4 feature points on π
expressed in F , Fd, and F∗, a linear system of equa-
tions can be developed from (10). From the linear sys-
tem of equations, a decomposition algorithm (e.g., the
Faugeras decomposition algorithm in [13]) can be used
to compute αi (t), αdi (t), n∗, R (t), and Rd (t) (see [5]
for details)2. Hence, αi (t), αdi (t), n∗, R (t), and Rd (t)
are known signals that can be used in the subsequent
development.

2.3 Kinematic Model of Vision System
The camera pose, denoted by Υ (t) ∈ R6, can be ex-
pressed in terms of a hybrid of pixel and reconstructed
Euclidean information as follows

Υ (t) ,
£
pTe1 ΘT

¤T
(11)

where the extended pixel coordinate pe1 (t) ∈ R3 is de-
fined as follows

pe1 =
£
u1 v1 − ln (α1)

¤T
, (12)

and Θ(t) ∈ R3 denotes the following axis-angle repre-
sentation of R(t) [32]

Θ = µ(t)θ(t). (13)

In (12), ln (·) denotes the natural logarithm, and α1(t)
is introduced in (3). In (13), µ (t) ∈ R3 represents the
unit axis of rotation, and θ (t) denotes the rotation angle
about that axis. Based on the development in Appendix
A, the open-loop dynamics for Υ (t) can be expressed
as follows

Υ̇ =

∙
ṗe1
Θ̇

¸
=

∙ − 1
z1
Ae1 Ae1 [m1]×

0 −Lω
¸∙

vc
ωc

¸
(14)

where vc(t) ∈ R3 and ωc(t) ∈ R3 denote the linear and
angular velocity of the camera expressed in terms of F ,

2The initial best-guess of n∗ can be utilized to resolve the
decomposition ambiguity. See [6] for details.
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Aei (ui, vi) ∈ R3×3 is a known, invertible matrix defined
as follows

Aei = A−
⎡⎣ 0 0 ui
0 0 vi
0 0 0

⎤⎦ i = 1, 2, 3, 4, (15)

and the invertible Jacobian-like matrix Lω(θ, µ) ∈ R3×3
is defined as

Lω = I3 − θ

2
[µ]× +

⎛⎜⎜⎝1− sinc (θ)

sinc2
µ
θ

2

¶
⎞⎟⎟⎠ [µ]2× (16)

where

sinc (θ (t)) , sin θ (t)

θ (t)
.

Remark 1 As stated in [32], the axis-angle representa-
tion of (13) is not unique, in the sense that a rotation of
−θ (t) about −µ(t) is equal to a rotation of θ (t) about
µ(t). A particular solution3 for θ (t) and µ(t) can be
determined as follows [32]

θp = cos
−1
µ
1

2
(tr (R)− 1)

¶ £
µp
¤
× =

R−RT
2 sin(θp)

(17)
where the notation tr (·) denotes the trace of a matrix,
and

£
µp
¤
× denotes the 3×3 skew-symmetric expansion

of µp(t). From (17), it is clear that

0 ≤ θp (t) ≤ π. (18)

3 Image-Based Path Planning

The path planning objective is to navigate the pose
of a camera held by the end-effector of a robot ma-
nipulator to a desired camera pose along an image-
space trajectory that ensures the target points re-
main visible. To achieve this objective, a desired
camera pose trajectory is constructed in this section
so that the desired image feature vector, denoted by
p̄d (t) ,

£
ud1 (t) vd1 (t) ... ud4 (t) vd4 (t)

¤T ∈
R8, remains in a set, denoted by D ⊂R8, where all four
feature points of the target remain visible for a valid
camera pose. The constant, goal image feature vector
p̄∗ ,

£
u∗1 v∗1 ... u∗4 v∗4

¤T ∈ R8 is assumed be in
the interior of D. To generate the desired camera pose
trajectory such that p̄d(t) ∈ D, the special artificial po-
tential function coined a navigation function in [23], can
be used. Specifically, the navigation functions used in
this paper are defined as follows [33].

Definition 1 A map ϕ (p̄d) : D→[0, 1], is a NF if:
3 See [4] for further details.

P 1) Analytic on D (at least the first and second partial
derivatives exist and are bounded on D);
P 2) a unique minimum exists at p̄∗;

P 3) it obtains a maximum value on the boundary of D
(i.e., admissible on D);
P 4) it is a Morse function (i.e., the matrix of second
partial derivatives, the Hessian, evaluated at its critical
points is nonsingular (and has bounded elements based
on the smoothness property in P 1)).

3.1 Pose Space to Image Space Relationship
To develop a desired camera pose trajectory that en-
sures p̄d (t) ∈ D, the desired image feature vector is
related to the desired camera pose, denoted by Υd (t) ∈
R6, through the following relationship

p̄d = Π (Υd) (19)

where Π (·) : R6 → D denotes an unknown function
mapping the camera pose to the image feature vector4.
In (19), the desired camera pose is defined as follows

Υd (t) ,
£
pTed1 ΘTd

¤T
(20)

where ped1 (t) ∈ R3 denotes the desired extended pixel
coordinates defined as follows

ped1 =
£
ud1 vd1 − ln (αd1)

¤T
(21)

where αd1(t) is introduced in (4), and Θd(t) ∈ R3 de-
notes the axis-angle representation of Rd(t) as follows

Θd = µd(t)θd(t) (22)

where µd(t) ∈ R3 and θd(t) ∈ R are defined in the same
manner as µ(t) and θ(t) in (13) with respect to Rd(t).

3.2 Desired Image Trajectory Planning
After taking the time derivative of (19), the following
expression can be obtained

.
p̄d= LΥdΥ̇d (23)

where LΥd (p̄d) ,
∂p̄d
∂Υd

∈ R8×6 denotes an image

Jacobian-like matrix. Based on the development in Ap-
pendix B, a measurable expression for LΥd (t) can be
developed as follows

LΥd = ĪT (24)

4The reason we choose four feature points to construct the
image feature vector is that the same image of three points can
be seen from four defferent camera poses [20]. A unique camera
pose can theoretically be obtained by using at least four points
[2]. Therefore, the map Π (·) is a unique mapping with the image
feature vector corresponding to a valid camera pose.
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where Ī ∈ R8×12 denotes a constant, row-delete matrix
defined as follows

Ī =

⎡⎢⎢⎣
I2 02 02 02 02 02 02 02

02 02 I2 02 02 02 02 02

02 02 02 02 I2 02 02 02

02 02 02 02 02 02 I2 02

⎤⎥⎥⎦
where In ∈ Rn×n denotes the n × n identity matrix,
0n ∈ Rn×n denotes an n × n matrix of zeros, 0n ∈ Rn
denotes an n× 1 column of zeros, and T (t) ∈ R12×6 is
a measurable auxiliary matrix defined as follows

T =

⎡⎢⎢⎢⎢⎢⎣
I3 03
β1
β2
Aed2A

−1
ed1 Aed2

h
β1
β2
md1 −md2

i
×
L−1ωd

β1
β3
Aed3A

−1
ed1 Aed3

h
β1
β3
md1 −md3

i
×
L−1ωd

β1
β4
Aed4A

−1
ed1 Aed4

h
β1
β4
md1 −md4

i
×
L−1ωd

⎤⎥⎥⎥⎥⎥⎦ .
(25)

In (25), Aedi (udi, vdi) ∈ R3×3 and the Jacobian-like ma-
trix Lωd(θd, µd) ∈ R3×3 are defined as in (15) and (16)
with respect to udi (t) , vdi (t) , µd (t), and θd (t), and the
auxiliary variable βi (t) ∈ R is defined as follows

βi ,
zdi
d

i = 1, 2, 3, 4. (26)

Based on (2), (6), and (8), βi (t) can be rewritten in
terms of computed and measurable terms as follows

βi =
1

n∗TRTdA−1pdi
. (27)

Motivated by (23) and the definition of the navigation
function in Definition 1, the desired camera pose trajec-
tory is designed as follows

Υ̇d = −k1LTΥd 5 ϕ (28)

where k1 ∈ R denotes a positive constant, and

5ϕ(p̄d) ,
³
∂ϕ(p̄d)
∂p̄d

´T
∈ R8 denotes the gradient vector

of ϕ(p̄d). The development of a particular image space
NF and its gradient are provided in Appendix C. After
substituting (28) into (23), the desired image trajectory
can be expressed as follows

.
p̄d= −k1LΥdLTΥd 5 ϕ (29)

where it is assumed that 5ϕ(p̄d) is not a member of
the null space of LTΥd (p̄d). Based on (23) and (28), it
is clear that the desired image trajectory generated by
(29) will satisfy rigid body constraints automatically.

Remark 2 Based on comments in [2] and the current
development, it seems that a remaining open problem is
to develop a rigorous, theoretical and general approach
to ensure that 5ϕ(p̄d) is not a member of the null space

of LTΥd (p̄d) (i.e., 5ϕ(p̄d) /∈ NS(LTΥd (p̄d)) where NS(·)
denotes the null space operator). However, since the
approach in this paper is developed in terms of the de-
sired image-space trajectory (and hence, is an off-line
approach), a particular desired image trajectory can be
chosen (e.g., by trial and error) a priori to ensure that
5ϕ(p̄d) /∈ NS(LTΥd (p̄d)). Similar comments are pro-
vided in [2] and [28] that indicate that in practice this
assumption can be readily satisfied for particular cases.
Likewise, a particular desired image trajectory is also
assumed to be a priori selected to ensure that Υd(t),
Υ̇d(t) ∈ L∞ if p̄d(t) ∈ D. Based on the structure of
(20) and (21), the assumption that Υd(t), Υ̇d(t) ∈ L∞
if p̄d(t) ∈ D is considered mild in the sense that the only
possible alternative case is if the camera could somehow
be positioned at an infinite distance from the target while
all four feature points remain visible.

3.3 Path Planner Analysis

Theorem 1 Provided the desired feature points can be
a priori selected to ensure that p̄d (0) ∈ D and that
5ϕ(p̄d) /∈ NS(LTΥd (p̄d)), then the desired image tra-
jectory generated by (29) ensures that p̄d(t) ∈ D and
(29) has the asymptotically stable equilibrium point p̄∗.

Proof: Let V1 (p̄d) : D → R denote a non-negative
function defined as follows

V1 (p̄d) , ϕ (p̄d) . (30)

After taking the time derivative of (30), the following
expression can be obtained

V̇1 (p̄d) = (5ϕ)T
.
p̄d . (31)

After substituting (29) into (31) to obtain the following
expression

V̇1 (p̄d) = −k1
°°LTΥd 5 ϕ

°°2 , (32)

it is clear that V1 (p̄d) is a non-increasing function in the
sense that

V1 (p̄d) ≤ V1 (p̄d(0)) . (33)

From (30), (33), and the development in Appendix C,
it is clear that for any initial condition p̄d (0) ∈ D,
that p̄d (t) ∈ D ∀t > 0; therefore, D is a positively
invariant set [21]. Let E1 ⊂ D denote the following set
E1 ,{p̄d (t)| V̇1 (p̄d) = 0}. Based on (32), it is clear that°°LTΥd(p̄d)5 ϕ (p̄d)

°° = 0 in E1; hence, from (28) and

(29) it can be determined that
°°°Υ̇d (t)°°° = °°° .p̄d (t)°°° = 0

in E1, and that E1 is the largest invariant set. By invok-
ing LaSalle’s Theorem [21], it can be determined that
every solution p̄d (t) ∈ D approaches E1 as t → ∞,
and hence,

°°LTΥd(p̄d)5 ϕ (p̄d)
°° → 0. Since p̄d (t) are

chosen a priori via the off-line path planning routine in

p. 5



(29), the four feature points can be a priori selected
to ensure that 5ϕ(p̄d) /∈ NS(LTΥd (p̄d)). Provided
5ϕ(p̄d) /∈ NS(LTΥd (p̄d)), then

°°LTΥd(p̄d)5 ϕ(p̄d)
°° = 0

implies that k5ϕ(p̄d)k = 0. Based on development of
Appendix C, since 5ϕ(p̄d)→ 0 then p̄d(t)→ p̄∗. ¤

4 Tracking Control Development

Based on Theorem 1, the desired camera pose trajectory
can be generated from (28) to ensure that the cam-
era moves along a path generated in the image space
such that the desired object features remain visible (i.e.,
p̄d(t) ∈ D). The objective in this section is to de-
velop a controller so that the actual camera pose Υ (t)
tracks the desired camera pose Υd (t) generated by (28),
while also ensuring that the object features remain visi-
ble (i.e., p̄(t) ,

£
u1 (t) v1 (t) ... u4 (t) v4 (t)

¤T ∈
D). To quantify this objective, a rotational tracking er-
ror, denoted by eω(t) ∈ R3, is defined as

eω , Θ−Θd, (34)

and a translational tracking error, denoted by ev (t) ∈
R3, is defined as follows

ev = pe1 − ped1. (35)

4.1 Control Development
After taking the time derivative of (34) and (35), the
open-loop dynamics for eω (t) and ev (t) can be obtained
as follows

ėω = −Lωωc − Θ̇d (36)

ėv = − 1
z1
Ae1vc +Ae1 [m1]× ωc − ṗed1 (37)

where (14) was utilized. Based on the open-loop error
systems in (36) and (37), vc(t) and ωc(t) are designed
as follows

ωc , L−1ω
³
Kωeω − Θ̇d

´
(38)

vc ,
1

α1
A−1e1 (Kvev − ẑ∗1 ṗed1) +

1

α1
[m1]× ωcẑ

∗
1 (39)

where Kω, Kv ∈ R3×3 denote diagonal matrices of pos-
itive constant control gains, and ẑ∗1(t) ∈ R denotes a
parameter estimate for z∗1 that is designed as follows

.

ẑ
∗
1, k2eTv

¡
Ae1 [m1]× ωc − ṗed1

¢
(40)

where k2 ∈ R denotes a positive constant adaptation
gain. After substituting (38) and (39) into (36) and
(37), the following closed-loop error systems can be de-
veloped

ėω = −Kωeω (41)

z∗1 ėv = −Kvev +
¡
Ae1 [m1]× ωc − ṗed1

¢
z̃∗1 (42)

where the parameter estimation error signal z̃∗1(t) ∈ R
is defined as follows

z̃∗1 = z
∗
1 − ẑ∗1 . (43)

4.2 Controller Analysis

Theorem 2 The controller introduced in (38) and
(39), along with the adaptive update law defined in (40),
ensure that the actual camera pose tracks the desired
camera pose trajectory in the sense that

keω(t)k→ 0 kev(t)k→ 0 as t→∞. (44)

Proof: Let V2(t) ∈ R denote a non-negative function
defined as follows

V2 ,
1

2
eTωeω +

z∗1
2
eTv ev +

1

2k2
z̃∗21 . (45)

After taking the time derivative of (45) and then sub-
stituting for the closed-loop error systems developed in
(41) and (42), the following expression can be obtained

V̇2 = −eTωKωeω − eTvKvev

+ eTv
¡
Ae1 [m1]× ωc − ṗed1

¢
z̃∗1 − 1

k2
z̃∗1

.

ẑ∗1
(46)

where the time derivative of (43) was utilized. After
substituting the adaptive update law designed in (40)
into (46), the following simplified expression can be ob-
tained

V̇2 = −eTωKωeω − eTvKvev. (47)

Based on (43), (45), and (47), it can be determined that
eω(t), ev(t), z̃∗1(t), ẑ∗1(t) ∈ L∞ and that eω(t), ev(t) ∈
L2. Based on the assumption that Θ̇d(t) is bounded
(see Remark 2), the expressions given in (34), (38), and
Lω (t) in (16) can be used to conclude that ωc(t) ∈ L∞.
Since ev(t) ∈ L∞, (35), (12), (8), and Ae1(t) in (15)
can be used to prove that u1(t), v1(t), α1(t), m1(t),
Ae1(t) ∈ L∞. Based on the assumption that ṗed1(t) is
bounded (see Remark 2), the expressions in (39), (40),

and (42) can be used to conclude that vc(t),
.

ẑ
∗
1 (t),

ėv(t) ∈ L∞. Since eω(t) ∈ L∞, it is clear from (41) that
ėω(t) ∈ L∞. Since eω(t), ev(t) ∈ L2 and eω(t), ėω(t),
ev(t), ėv(t) ∈ L∞, Barbalat’s Lemma [31] can be used
to prove the result given in (44). ¤

Remark 3 Based on the result provided in (44), it can
be proven from the Euclidean reconstruction given in
(3) and (4) that R(t) → Rd(t), m1(t) → md1(t), and
z1(t) → zd1(t) (and hence, xf (t) → xfd(t)). Based
on these results, (1) can be used to also prove that
m̄i(t) → m̄di(t). Since Π (·) is a unique mapping, we
can conclude that the desired camera pose converges
to the goal camera pose based on the previous result
p̄d(t)→ p̄∗ from Theorem 1. Based on the above analy-
sis, m̄i(t)→ m̄∗.

Remark 4 Based on (45) and (47), the following in-
equality can be obtained

eTωeω + e
T
v ev 6 2max

½
1,
1

z∗1

¾
V2 (t) (48)
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6 2max

½
1,
1

z∗1

¾
V2 (0)

where

V2 (0) =
1

2
eTω(0)eω(0) +

z∗1
2
eTv (0)ev(0) +

1

2k2
z̃∗21 (0).

From (11), (20), (34), (35), and the inequality in (48),
the following inequality can be developed

kΥ−Υdk 6
s
2max

½
1,
1

z∗1

¾
V2 (0). (49)

Based on (19), the following expression can be developed

p̄ = Π (Υ)−Π (Υd) + p̄d. (50)

After applying the mean-value theorem to (50), the fol-
lowing inequality can be obtained

kp̄k 6 kLΥdk kΥ−Υdk+ kp̄dk . (51)

Since all signals are bounded, it can be shown that
LTΥd(p̄d) ∈ L∞; hence, the following inequality can be
developed from (49) and (51)

kp̄k 6 ζb
p
V2 (0) + kp̄dk (52)

for some positive constant ζb ∈ R, where p̄d (t) ∈ D
based on Theorem 1. To ensure that p̄ (t) ∈ D, the
image space needs to be sized to account for the effects
of ζbV2 (0). Based on , V2 (0) can be made arbitrarily
small by increasing k2 and initializing p̄d (0) close or
equal to p̄ (0).

5 Simulation Results

From a practical point of view, we choose a state-related
time varying control gain matrix k3

¡
LTΥLΥ

¢−1
instead

of a constant k1 in (28) for the image path planner as
follows

Υ̇d = −k3
¡
LTΥLΥ

¢−1
LTΥd 5 ϕ (53)

where k3 ∈ R is a constant control gain. Through many
simulation trials, we conclude that the path planner in
(53) works better than the path planner in (28). Using
the path planner in (53) instead of the path planner in
(28) will not affect the proof for Theorem 1 as long as
LTΥLΥ is positive definite along the desired image tra-
jectory p̄d (t) (It is clear that LTΥLΥ is positive definite
if LΥd (p̄d) is full rank). Similar to the statement in
Remark 2, this assumption is readily satisfied for this
off-line path planner approach.

To solve the self-occlusion problem (The terminology,
self-occlusion, in this paper is utilized to denote the case
when the center of the camera is in the plane determined

by the feature points) from a practical point of view, we
define a distance ratio γ (t) ∈ R as follows

γ (t) =
d

d∗
(54)

From [25], γ (t) is measurable. The idea to avoid the
self-occlusion is to plan a desired image trajectory with-
out self-occlusion. Based on (52), we can assume that
the actual trajectory is close enough to the desired tra-
jectory such that no self-occlusion occured for the actual
trajectory. This assumption has been verified by many
simulation trials.

To illustrate the performance of the path planner given
in (53) and the controller given in (38)-(40), we imple-
mented the simulations for four standard visual servo
tasks, which are believed represent the most interesting
tasks encountered by visual servo system [18]:

• Task 1: Optical axis rotation, a pure rotation about
the optic axis

• Task 2: Optical axis translation, a pure translation
along the optic axis

• Task 3: Camera y-axis rotation, a pure rotation of
the camera about the y-axis of the camera coordi-
nate frame.

• Task 4: General camera motion, a transformation
that includes a translation and rotation about an
arbitrary axis.

For the simulation, the intrinsic camera calibration ma-
trix is given as follows

A =

⎡⎢⎣ fku −fku cotφ u0

0
fkv
sinφ

v0

0 0 1

⎤⎥⎦ (55)

where u0 = 257 [pixels], v0 = 253 [pixels], ku = 101.4
[pixels·mm−1] and kv = 101.4 [pixels·mm−1] represent
camera scaling factors, φ = 90 [Deg] is the angle be-
tween the camera axes, and f = 12.5 [mm] denotes the
camera focal length.

5.1 Simulation Results: Optical axis rotation
The initial desired image-space coordinates and the ini-
tial desired image-space coordinates of the 4 target
points were selected as follows (in pixels)

p1 (0) = pd1 (0) =
£
434 445 1

¤T
p2 (0) = pd2 (0) =

£
56 443 1

¤T
p3 (0) = pd3 (0) =

£
69 49 1

¤T
p4 (0) = pd4 (0) =

£
449 71 1

¤T
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Figure 2: Desired Image Trajectory of Task 1

while the image-space coordinates of the 4 constant ref-
erence target points were selected as follows (in pixels)

p∗1 =
£
416 46 1

¤T
p∗2 =

£
479 418 1

¤T
p∗3 =

£
88 473 1

¤T
p∗4 =

£
45 96 1

¤T
.
(56)

The feedback gains Kv and Kω, the adaptation gain k2
and control gain k3, and the image navigation function
parameter K and κ were adjusted through trial and
error to the following values to yield improved perfor-
mance

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}
k2 = 0.04 k3 = 400000 κ = 8

K = diag {10, 10, 10, 18, 13, 15, 10, 10} .

The resulting desired image trajectory and actual im-
age trajectory are depicted in Figure 2 and Figure 3,
translational and rotational errors of the target are de-
picted in Figure 4 and Figure 5, respectively, and the
parameter estimate signal is depicted in Figure 6. The
control input velocities ωc(t) and vc(t) defined in (38)
and (39) are depicted in Figure 8 and 7. From Figure 2
and Figure 3, it is clear that the desired feature points
and actual feature points remain in the camera field of
view and converge to the goal feature points. Figure 4
and Figure 5 show that the tracking errors go to zero
as t → ∞. From Figure 4 to Figure 8, it is clear that
all the signals are bounded.

5.2 Simulation Results: Optical axis translation
The initial desired image-space coordinates and the ini-
tial desired image-space coordinates of the 4 target
points were selected as follows (in pixels)

p1 (0) = pd1 (0) =
£
363 115 1

¤T
p2 (0) = pd2 (0) =

£
402 361 1

¤T
p3 (0) = pd3 (0) =

£
147 397 1

¤T
p4 (0) = pd4 (0) =

£
116 148 1

¤T
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Figure 3: Actual Image Trajectory of Task 1
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Figure 4: Translational Error of Task 1
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Figure 5: Rotational Error of Task 1
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Figure 6: Estimate of z∗1 of Task 1
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Figure 7: Linear Velocity Input of Task 1
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Figure 8: Angular Velocity of Task 1
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Figure 9: Desired Image Trajectory of Task 2

while the image-space coordinates of the 4 constant ref-
erence target points were selected as follows (in pixels)

p∗1 =
£
416 46 1

¤T
p∗2 =

£
479 418 1

¤T
p∗3 =

£
88 473 1

¤T
p∗4 =

£
45 96 1

¤T
.

The feedback gains Kv and Kω, the adaptation gain k2
and control gain k3, and the image navigation function
parameter K and κ were adjusted through trial and
error to the following values to yield improved perfor-
mance

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}
k2 = 0.0004 k3 = 10000 κ = 8

K = diag {30, 20, 10, 28, 33, 25, 10, 40} .

The resulting desired image trajectory and actual im-
age trajectory are depicted in Figure 9 and Figure 10,
translational and rotational errors of the target are de-
picted in Figure 11 and Figure 12, respectively, and the
parameter estimate signal is depicted in Figure 13. The
control input velocities ωc(t) and vc(t) defined in (38)
and (39) are depicted in Figure 15 and 14. From Fig-
ure 9 and Figure 10, it is clear that the desired feature
points and actual feature points remain in the camera
field of view and converge to the goal feature points.
Figure 11 and Figure 12 show that the tracking errors
go to zero as t→∞. From Figure 11 to Figure 15, it is
clear that all the signals are bounded.

5.3 Simulation Results: Camera y-axis rotation
The initial desired image-space coordinates and the ini-
tial desired image-space coordinates of the 4 target
points were selected as follows (in pixels)

p1 (0) = pd1 (0) =
£
98 207 1

¤T
p2 (0) = pd2 (0) =

£
112 288 1

¤T
p3 (0) = pd3 (0) =

£
29 301 1

¤T
p4 (0) = pd4 (0) =

£
15 217 1

¤T
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Figure 10: Actual Image Trajectory of Task 2

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

e v1
 [p

ix
el

]

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

e v2
 [p

ix
el

]

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2
x 10

−3

e v3

Time [s]

Figure 11: Translational Error of Task 2
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Figure 12: Rotational Error of Task 2
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Figure 13: Estimate of z∗1 of Task 2
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Figure 14: Linear Velocity Input of Task 2
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Figure 15: Angular Velocity Input of Task 2
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Figure 16: Desired Image Trajectory of Task 3

while the image-space coordinates of the 4 constant ref-
erence target points were selected as follows (in pixels)

p∗1 =
£
478 206 1

¤T
p∗2 =

£
492 289 1

¤T
p∗3 =

£
408 300 1

¤T
p∗4 =

£
395 218 1

¤T
.

The feedback gains Kv and Kω, the adaptation gain k2
and control gain k3, and the image navigation function
parameter K and κ were adjusted through trial and
error to the following values to yield improved perfor-
mance

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}
k2 = 0.0004 k3 = 1000000 κ = 8

K = diag {30, 20, 10, 28, 33, 25, 10, 40} .

The resulting desired image trajectory and actual im-
age trajectory are depicted in Figure 16 and Figure 17,
translational and rotational errors of the target are de-
picted in Figure 18 and Figure 19, respectively, and the
parameter estimate signal is depicted in Figure 20. The
control input velocities ωc(t) and vc(t) defined in (38)
and (39) are depicted in Figure 22 and 21. From Fig-
ure 16 and Figure 17, it is clear that the desired feature
points and actual feature points remain in the camera
field of view and converge to the goal feature points.
Figure 18 and Figure 19 show that the tracking errors
go to zero as t→∞. From Figure 18 to Figure 22, it is
clear that all the signals are bounded.

5.4 Simulation Results: General Camera Mo-
tion
The initial desired image-space coordinates and the ini-
tial desired image-space coordinates of the 4 target
points were selected as follows (in pixels)

p1 (0) = pd1 (0) =
£
267 428 1

¤T
p2 (0) = pd2 (0) =

£
295 257 1

¤T
p3 (0) = pd3 (0) =

£
446 285 1

¤T
p4 (0) = pd4 (0) =

£
420 449 1

¤T
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Figure 17: Actual Image Trajectory of Task 3
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Figure 18: Translational Error of Task 3
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Figure 19: Rotational Error of Task 3
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Figure 20: Estimate of z∗1 of Task 3
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Figure 21: Linear Velocity Input of Task 3
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Figure 22: Angular Velocity Input of Task 3
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Figure 23: Desired Image Trajectory of Task 4

while the image-space coordinates of the 4 constant ref-
erence target points were selected as follows (in pixels)

p∗1 =
£
416 46 1

¤T
p∗2 =

£
479 418 1

¤T
p∗3 =

£
88 473 1

¤T
p∗4 =

£
45 96 1

¤T
.

The feedback gains Kv and Kω, the adaptation gain k2
and control gain k3, and the image navigation function
parameter K and κ were adjusted through trial and
error to the following values to yield improved perfor-
mance

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}
k2 = 0.004 k3 = 200000 κ = 8

K = diag {10, 10, 10, 18, 13, 15, 10, 10} .

The resulting desired image trajectory and actual im-
age trajectory are depicted in Figure 23 and Figure 24,
translational and rotational errors of the target are de-
picted in Figure 25 and Figure 26, respectively, and the
parameter estimate signal is depicted in Figure 27. The
control input velocities ωc(t) and vc(t) defined in (38)
and (39) are depicted in Figure 29 and 28. From Fig-
ure 23 and Figure 24, it is clear that the desired feature
points and actual feature points remain in the camera
field of view and converge to the goal feature points.
Figure 25 and Figure 26 show that the tracking errors
go to zero as t→∞. From Figure 25 to Figure 29, it is
clear that all the signals are bounded.

6 Conclusions

A path planner is developed based on an image-space
NF that ensures the desired image trajectory converges
to the goal position while also ensuring the desired im-
age features remain in a visibility set under certain tech-
nical restrictions. An adaptive, homography-based vi-
sual servo tracking controller is then developed to nav-
igate the camera-in-hand pose along the desired tra-
jectory despite the lack of depth information from a
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Figure 24: Actual Image Trajectory of Task 4

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

e v1
 [p

ix
el

]

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

e v2
 [p

ix
el

]

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10
x 10

−3

e v3

Time [s]

Figure 25: Translational Error of Task 4
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Figure 26: Rotational Error of Task 4
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Figure 27: Estimate of z∗1 of Task 4
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Figure 28: Linear Velocity Input of Task 4
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Figure 29: Angular Velocity Input of Task 4
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monocular camera system. The path planner and the
tracking controller are analyzed through a Lyapunov-
based analysis. Simulation results are provided to illus-
trate the performance of the proposed approach.
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Appendix A

The extended image coordinates pe1 (t) of (12) can be
written as follows

pe1 =

⎡⎣ a1 a2 0
0 a3 0
0 0 1

⎤⎦
⎡⎢⎢⎣
x1
z1y1
z1
ln (z1)

⎤⎥⎥⎦+
⎡⎣ a4
a5
− ln (z∗1)

⎤⎦
(57)

where (7), (8), and (9) were utilized. After taking the
time derivative of (57), the following expression can be
obtained

ṗe1 =
1

z1
Ae1

.
m̄1 .

By exploiting the fact that
.
m̄1 (t) can be expressed as

follows
.
m̄1= −vc + [m̄1]× ωc,

the open-loop dynamics for pe1(t) can be rewritten as
follows

ṗe1 = − 1
z1
Ae1vc +Ae1 [m1]× ωc.

The open-loop dynamics for Θ(t) can be expressed as
follows [11]

Θ̇ = −Lωωc.

Appendix B

Similar to (14), the dynamics forΥd (t) can be expressed
as

Υ̇d =

∙
ṗed1
Θ̇d

¸
=

∙ − 1
zd1
Aed1 Aed1 [md1]×

03 −Lωd

¸∙
vcd
ωcd

¸
(58)

where Θd(t) is defined in (22), zdi(t) is introduced in
(2), Aedi (udi, vdi) is defined in the same manner as
in (15) with respect to the desired pixel coordinates
udi(t), vdi(t), mdi(t) is given in (1), Lωd(θd, µd) is de-
fined in the same manner as in (16) with respect to θd(t)
and µd(t), and vcd(t), ωcd(t) ∈ R3 denote the desired
linear and angular velocity signals that ensure compat-
ibility with (58). The signals vcd(t) and ωcd(t) are not
actually used in the trajectory generation scheme pre-
sented in this paper as similarly done in [5]; rather, these

signals are simply used to clearly illustrate how
.
p̄d (t)

can be expressed in terms of Υ̇d(t) as required in (23).
Specifically, we first note that the top block row in (58)
can be used to write the time derivative of ped2(t) in
terms of vcd(t) and ωcd(t) with i = 2

ṗed2 =
£ − 1

zd2
Aed2 Aed2 [md2]×

¤∙ vcd
ωcd

¸
(59)

where pedi(t) is defined in the same manner as (21) ∀i =
1, 2, 3, 4. After inverting the relationship given by (58),
we can also express vcd(t) and ωcd(t) as a function of
Υ̇d(t) as follows∙

vcd
ωcd

¸
=

∙ −zd1A−1ed1 −zd1 [md1]× L
−1
ωd

0 −L−1ωd

¸
Υ̇d. (60)

After substituting (60) into (59), ṗed2(t) can be ex-
pressed in terms of Υ̇d(t) as follows

ṗed2 =
h

zd1
zd2

Aed2A
−1
ed1 Aed2

h
zd1
zd2

md1 −md2

i
×
L−1ωd

i
Υ̇d.

(61)

After formulating similar expressions for ṗed3(t) and
ṗed4(t) as the one given by (61) for ṗed2(t), we can com-
pute the expression for LΥd (p̄d) in (24) by utilizing the
definitions of pdi (t) and pedi (t) given in (7) and (21),
respectively (i.e., we must eliminate the bottom row of
the expression given by (61)).

Appendix C

Inspired by the framework developed in [9], an image
space NF is constructed by developing a diffeomor-
phism5 between the image space and a model space,
developing a model space NF, and transforming the
model space NF into an image space NF through the
diffeomorphism (since NFs are invariant under diffeo-
morphism [23]). To this end, a diffeomorphism is de-
fined that maps the desired image feature vector p̄d to
the auxiliary model space signal ζ (p̄d) ,[ζ1 (p̄d) ζ2 (p̄d)
... ζ8 (p̄d)]

T : [−1, 1]8 → R8 as follows

ζ = diag{ 2
umax−umin ,

2
vmax−vmin , ...,

2
vmax−vmin }p̄d (62)

− £ umax+umin
umax−umin

vmax+vmin
vmax−vmin ... vmax+vmin

vmax−vmin
¤T
.

In (62), umax, umin, vmax, and vmin ∈ R denote the
maximum and minimum pixel values along the u and
v axes, respectively. The model space NF, denoted by
ϕ̃ (ζ) ∈ R8 → R, is defined as follows [9]

ϕ̃ (ζ) , ϕ̄

1 + ϕ̄
. (63)

5A diffeomorphism is a map between manifolds which is dif-
ferentiable and has a differentiable inverse.
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In (63), ϕ̄ (ζ) ∈ R8 → R is defined as

ϕ̄ (ζ) , 1

2
f (ζ)T Kf (ζ) (64)

where the auxiliary function f (ζ) : (−1, 1)8 → R8 is
defined similar to [9] as follows

f (ζ) =
h

ζ1−ζ∗1
(1−ζ2κ1 )

1/2κ ...
ζ8−ζ∗8

(1−ζ2κ8 )
1/2κ

iT
(65)

where K ∈ R8×8 is a positive definite, symmetric ma-
trix, and κ is a positive parameter. The reason we use
κ instead of 1 as in [9] is to get an additional parameter
to change the potential field formed by f (ζ). See [9]
for a proof that (63) satisfies the properties of a NF as
described in Definition 1. The image space NF, denoted
by ϕ (p̄d) ∈ D→ R, can then be developed as follows

ϕ (p̄d) , ϕ̃ ◦ ζ (p̄d) (66)

where ◦ denotes the composition operator. The gradient
vector 5ϕ (pd) can be expressed as follows

5ϕ ,
µ
∂ϕ

∂p̄d

¶T
=

µ
∂ϕ̃

∂ζ

∂ζ

∂p̄d

¶T
. (67)

In (67), the partial derivative expressions ∂ζ(p̄d)
∂p̄d

, ∂ϕ̃(ζ)∂ζ ,

and ∂f(ζ)
∂ζ can be expressed as follows

∂ζ

∂p̄d
= diag{ 2

umax−umin ,
2

vmax−vmin , ...,
2

vmax−vmin } (68)

∂ϕ̃

∂ζ
=

1

(1 + ϕ̄)2
fTK

∂f

∂ζ
(69)

∂f

∂ζ
= diag

(
1− ζ2κ−11 ζ∗1¡

1− ζ2κ1
¢(2κ+1)/2κ , ..., 1− ζ2κ−18 ζ∗8¡

1− ζ2κ8
¢(2κ+1)/2κ

)
.

(70)

It is clear from (62)-(70) that p̄d(t) → p̄∗ when
5ϕ (p̄d)→ 0.
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